戴氏教育严选师资,好老师=好成绩,均有5年以上高考毕业班带班经验
更懂学生:横扫学生知识盲点,细致耐心解答学生问题
更懂考试:熟悉考点、命题趋势、同步考点学习
更懂提分:精通历年考点重点、熟悉掌握命题趋势
第一,要在自学(或预习)的基础上带着问题来听课,在急于想找到问题答案的欲望的驱使下你的听课效率一定会很高;第二,就是你感到上课之前这节课的内容都会了也要认真听,听老师是怎样对这些问题描述的、解释的,是从哪几个角度来分析的,你不认为老师那简洁准确的语言、形象的比喻、严密的推理不正是你所缺乏的吗?这样下来你一定会感到这节课的确受益匪浅。第三,注意做好课前的物质准备和精神准备,以免上课时出现书、本等物丢三落四的现象,上
课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等,以免上课后还气喘嘘嘘,不能平静下来。
高一数学一对一提分函数概念.
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,这就是集合纯粹性。6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。
集合有以下性质
若A包含于B,则A∩B=A,A∪B=B
集合的表示方法
集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0
目标要有连续性。制定目标时,要根据知识的相关性和能力的联系性,有计划有序列地制定目标,以形成知识和能力的链条,达到知识的系统化。
目标要有针对性。制定目标时,一要针对《考试说明》规定的各种能力要求,二要针对复习的重点、难点,三要针对学生知识能力的薄弱环节,努力做到有的放矢。
目标要具有可量性。复习目标的制定要便于评估量化和控制,便于在复习过程中进行矫正和反馈。
倘若就我们的学习喻作航船,勤奋则是轮船的马达;正确的学习方法便是轮船的方向盘与航线、让我们驾上这艘希冀之船在知识的海洋中园游,让船儿载着我们驶向美好吧!